Package: SMARTbayesR 2.0.0
SMARTbayesR: Bayesian Set of Best Dynamic Treatment Regimes and Sample Size in SMARTs for Binary Outcomes
Permits determination of a set of optimal dynamic treatment regimes and sample size for a SMART design in the Bayesian setting with binary outcomes. Please see Artman (2020) <arxiv:2008.02341>.
Authors:
SMARTbayesR_2.0.0.tar.gz
SMARTbayesR_2.0.0.zip(r-4.5)SMARTbayesR_2.0.0.zip(r-4.4)SMARTbayesR_2.0.0.zip(r-4.3)
SMARTbayesR_2.0.0.tgz(r-4.4-any)SMARTbayesR_2.0.0.tgz(r-4.3-any)
SMARTbayesR_2.0.0.tar.gz(r-4.5-noble)SMARTbayesR_2.0.0.tar.gz(r-4.4-noble)
SMARTbayesR_2.0.0.tgz(r-4.4-emscripten)SMARTbayesR_2.0.0.tgz(r-4.3-emscripten)
SMARTbayesR.pdf |SMARTbayesR.html✨
SMARTbayesR/json (API)
# Install 'SMARTbayesR' in R: |
install.packages('SMARTbayesR', repos = c('https://wilart.r-universe.dev', 'https://cloud.r-project.org')) |
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 3 years agofrom:b247e7a065. Checks:OK: 7. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 21 2024 |
R-4.5-win | OK | Nov 21 2024 |
R-4.5-linux | OK | Nov 21 2024 |
R-4.4-win | OK | Nov 21 2024 |
R-4.4-mac | OK | Nov 21 2024 |
R-4.3-win | OK | Nov 21 2024 |
R-4.3-mac | OK | Nov 21 2024 |
Exports:LogORLogRRMCBUpperLimitsPosteriorEDTRProbsPosteriorTrtSeqProbPowerBayesianRDSimDesign1
Dependencies:LaplacesDemon